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ADArIFVE TCON OF A KNOWN SIGNAL IN NON-GAUSSIAN NOISE

STEVEN V. CZRNCKa and JOHN B. THOMAS + ,, -

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08540

ABSrMCT 'L3

The design of a locally optimal detector for a known signal i1 non-Gaussian
noise is discussed. The optimal detector nonlinearity is approximated adaptively /
in the noise pdf tail region, and a polynomial is used to approximate the non-
linearity near the mean. Examples for several different noise environments are 0

presented, shwi in these eases that the adaptive detector is able to achieve a
high level of performance

1. INTRODUCLON
A binary hypothesis test may be used to model the problem of detecting a

known signal in the presence of noise. Let "0z = Is 1 ... ,sl be the known signal
sequence with amplitude parameter -0 > 0, and let n = in,.... ,nUI be an id
noise sequence independent of the signal. The detector observes x+ a data
sequence Jz ..... z1 m, and decides between:

HO: x = n

H,: x = n+-ds

In the framework of Neyman-Pearson hypothesis testing, z and the multivariate
noise density f are used to calculate a likelihood ratio Amp. This test statistic
and a fixed threshold TNp are compared to arrive at a decision: H, is chosen
when ANp > TNp, and H0 is chosen when Avp s TNp. More precisely,

f f s(xIl H ) = f (- 63) >

Since the noise is uid, and the logarithm function is monotonic, an equivalent test
is

> (2
ASP = EnAP yp,jza)1..,. ( = XP

'U' ,.'t', A(20 I(

where f, is the univariate density of ih. When the signal is constant, ; = s for
s= L--- , ., and the sequence iajp,w may be replaced with a er memory
nonlinearity, gNP.

In cases where the signal-to-noise ratio is very small, the test statistic may 14
be calculated via the locally optimal detector. The test becomes 02

,= f£uwozO=) d NJ (;) H
A .1 41 Ho

Implicit in both detection methods is a requirement that the noise pdf must be 3

known exactly. In general, Ue noise statistics are not known with precision and
the design of the LO or NP detector is not straightforward. Alternative detection
strategies are available, and among these are (1) detectors which are robust with
respect to deviations from a nominal noise environment [2,8]; (2) nonparametric
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detectors which use only very general information about the underlying noise
distribution [3]; and (3) fixed or adaptive suboptimal detectors which have nearly
optimal performance [4,7,133. An additional consideration is that often the noise
environment is nonstationary and an adaptive structure is necessary.

2. DETECTION IN NON-GAUSSIAN NOISE
The classical assumption in the design and analysis of detection systems is

that the noise is Gaussian. This assumption has attractive features in that the
Gaussian model is mathematically tractable, the optimal detector structure is
linear, and strong justification for the model is available in the form of the Cen-
tral Limit Theorem. Measurements of typical noise environments have led to the
conclusion that the true noise distribution often is described better by a heavier
tailed pdf [5,6,12,133. This type of noise can be ascribed to a nominal Gaussian
environment with a heavy tailed impulsive noise contaminant, and to the fact
that a real noise comprises a finite sum of random events; convergence to the
Gaussian pdf is not complete for a finite sum, but the sum pdf is most nearly
Gaussian near the mean, with the tails converging to the Gaussian pdf only in the
limiting case. For example, previous work in detection has taken note of non-
Gaussian noise environments, where the noise density is approximately Gaussian
near the mean, but heavier tailed away from the mean [1,6.10].

The NP and LO detector nonlinearities related to near-Gaussian heavy tailed
densities are typically composed of a linear region surrounded by tails which
compress, limit, or even blank large data observations. Work in robust estima-
tion of the mean has similarly suggested that, in heavy tailed noise, a robust
estimator should reduce the influence of very large data observations while leav-
ing observations near the mean relatively unchanged [9).

3. A S LBOPTIMAL DETECTOR APPROXIMATION
This paper presents an approach to the design of a noise-adaptive subop-

timal detector with these ideas in mind. Attention is focused on the case of LO
detection of a constant binary signal in discrete time, with iid noise assumed.
Further, the noise pdf is restricted to be unimodal, symmetric about its mean
placed at the origin, and to have nonzero support over the entire real line. We
are interested in approximating ZNL's loosely specified by the following charac-
teristics:

a) continuous, with continuous low-order derivatives
b) approximately linear at the origin
c) odd symmetric about the origin
d) strictly positive to the right of the origin
e) monotone in the tail regions
f) possess only one local extremum on either side of the origin

Pdf's which are non-Gaussian in the sense previously described can generate LO
nonlinearities with these characteristics, which are typical of robust and subop-
timal detector nonlinearities, and also of many of the influence curves given for
robust estimation procedures [ 11 ).

The tail behavior of these LO nonlinearities range from linear for a noise pdf
with Gaussian tails, to a limiter for exponentially decreasing pdf tails, to a
blanker for algebraically decreasing pdf tails. In general, the heavier tailed the
noise density Is relative to the Gaussian pdf, the more severely curtailed is the J
effect of large data observations.

The objective of a noise adaptive nonlinearity, then, should be to relate the
ZNL tail behavior to the actually observed noise pdf tail behavior. We propose
the following method: It has been reported [12) that the generalized Gaussian
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density

.,(Z)- I'7/€ 19(-qz (4)

in certain instances can describe the pdf talls of some physical noise sources.
For a noise variance of v2. the parameter Yj is defined by

71 = rI /€c) M
HOralc) I

The corresponding LO nonlinearities, shown in Figure 1, can be written as

DLO(z) = c i I -1sgn(z) (5)
with the c conveniently parameterizing ZNL tail behavior. Therefore. we model
the observed noise pdf tails via the generalized Gaussian family. The suboptimal
LO nonlinearity thus will have power law tails described by

LO(z) = 617 1z 1e'sgn(x) forl I zo (6)

It is necessary to find a value Z such that fe is a good approximant to the tail
behavior of f., the true but unknown underlying noise density. A simple way to
do this is to equate the tail probability of f a with the observed tail mass

N,. (

Here, I is the indicator function and rt are the noise observations presumed
available from a noise reference channel. The exponent c can be estimated then
by finding E such that

2 fe(z)dz = P(

For the purpose of calculating -, the observed noise variance vNe is used. The
estimate B is defined by the implicit integral in (8), so it is desirable to derive a
simpler explicit relationship

6 = h.(P- ) (9)

One obvious method is to first calculate Pr as a function of c, and then interpo-
late this tabulation to approximate (9). This tabulated version of hr is shown in
Figure 2.

With 9 fixed and c small, the value of 17, a scale factor, becomes large.
Therefore, even though fr, (s) approaches zero asymptotically at a much slower
rate than the Gaussian pdf as I I) gets large, the total probability mass in the
tails is quite small. As a result, ht is multiple valued, the density is extremely
peaked, and the LO nonlinearity has a discontinuity at the origin. Clearly, for
c < 1. the requirement of near-linearity at the origin is not met by (5). Since the
objective in using the generalized Gaussian pdf is to relate the tal heaviness of
an observed noise to a parameter governing the shape of the ZNL tall. we replace
the anomalous behavior of the true function , with a simple linear relation

ir7(P) = 1r+0)
where a and 6 are chosen to approximate (9) for a particular value of T. This
approximation is plotted p the broken line on Figure 2. The values for a and 6
are chosen so that when Pr corresponds to Gaussian or exponential noise tails,
(10) gives 8,- 2 and 0 a 1, respectively. kote that the linear relation allows the
value of I to be negative for large tall probabilities.
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The tail measurement threshold T must be chosen prior to estimating

parameters a and 6. One way to pick T is to choose a value which minimizes

E.,varej = a ECTIN P(1)

where N is the number of noise observations. For c uniformly distributed on the
interval [1,2), and P7 the tail probability of f,(z) for I:1 > T, the constant
T = 3a approximately minimizes (11).

The LO nonlinearities of the generalized Gaussian family have desirable tail
behavior, but for small values of E the behavior does not meet the constraint of
linearity near the origin. To eliminate this behavior, the ZNL needs modification
in the region near the origin. A way in which to do this is to replace §w(z). for z
near zero, with a function that fits the given desired characteristics (a-f). A suit-
able family of functions are polynomials p (z) with the following characteristics:

p(z) = a3z5 +a~z 2+aj+ao for 0!9 z!%zo
p(O) = 0
p( I *:zO)sgn(+zo) = Dw(+zo)
J'(I *ZO 1) = #',o(*Xo)

P"(I ±Zol)sgn(±zo) = D"Wo(±zo)
The choice of tail behavior via 6 and the point xo completely specify p (z). The
method for choosing 6 has already been specified, so the choice of zo is the
remaining free parameter.

A method equivalent to choosing the proper zo is to choose an arbitrary xO
and scale the input to the ZNL with a factor v. It is reasonable to choose v to
maximize the efficacy nf the ZNL. For an arbitrary nonlinearity q, efficacy as a
function of Y can be defined as

~(12)

= E;[q2 (Yz)]-E[q(vz) ]

where Et refers to the expectation with respect to the density function f (z),
and q' refers to the first derivative of q.

At this point, specification of the suboptimal nonlinearity P is complete, and
can be written as

p(Ivz')sgn(vx) if Ir I'zo
VZ)- =11&z 1 -sgn(mz) if I I>zo (13)

Figures 3a-3c gives some examples of the types of nonlinearities available usingthis approximation method.

4. IXAMPLES
Analytic

We will now present examples of the use of V in approximating some known
optimal LO nonlinearities.

The first comparison is between the approximate and exact versions of LO
nonlinearities for the generalized Gaussian family. The exponent e is Etven by
(10). after using the exact value a in (8) to obtain PT. Since this is an analytical
example, and the true noise density is known, numerical methods can be sed to
obtain Y'0, the value of v which maximizes t.(Y). The performance of the subop-
timal ZNL relative to the LO nonlinearity can be measured by asymptotic relative
efficiency, which is given easily in terms of efficacy a
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AREg,=2 (14)

Figure 4 compares the performance of P. the LO detector and a linear detector
(1d), in terms of ARE#.,, and ARF.M. The suboptimal nonlinearity performs
quite well for the range 1 a c 2, but for c < 1. performance deteriorates. This
is easily explainable, since for small c. the LO nonlinearity output approaches *-
for inputs near zero, while the approximation method requires I to pass through
the origin

Another family of heavy tailed pdf's is the Johnson S. family. If X is distri-
buted as an N(O,og) random variable, and we define a new random variable

Ai = sinh[] (15)

then the density of Y has unity variance, and belongs to the Johnson S. family,
given by

with

= [exp(2/62)-l(7

The parameter 6 controls the tail heaviness. As 6 -. the pdf tails become pro-
gressively lighter, and approach Gaussian tails in the limit.

Since f# is given and known. PT can be calculated from (8), and (10) gives c.
Again, numerical methods can find the v* which maximizes (12). Some
representative LO nonlinearities and suboptimal approximations are given for
various values of 6 in Figure 5, and Figure 6 presents the performance com-
parison of 9, gLo, and Id. For this set of densities, the approximation method
works quite well. Over the range .8:s 6 • -, the minimum of AREt.,,, is .989,
(occurring for 6 = .8). This means that only a small performance penalty would
be incurred if § were to replace the LO detector. As a final comment, it should
be observed that unlike the generalized Gaussian family, the Johnson S. family
fulfills the characteristics of a near Gaussian pdf given earlier.

A third family of heavy tailed densities was also investigated. This third fa m-
ily is the c-contaminated Gaussian mixture, and in this case, the Gaussian-
Gaussian mixture. The pdf of this noise can be written as

f (z)= (1-C)o(z) + (18)
where fo represents the pdf of an N(O,1) distributed random variable, and fJ3
represents the pdf of an N(Ooa) random variable, with ol large. The parameter
c controls the degree to which f I contaminates the nominal density f 0. and is
typically taken to be small. The performance of the suboptimal ZNL was calcu-
lated for some upecflc cases, and the results appear in Table 1. Figure 7 shows
the comparison in the form of two LO nonlinearities and the corresponding
approximations. The performance of the approximations in this case is not as
good as the approximations under the Johnson 3, family. Once again not all the
assumptions are met by the c-contaminated Gausian-Gaussian mixture on the
form of the LO nonlinearity, as there is more than one local extremum on each
side of the origin.



-6-

Table I

Performance of gL and D in eontaminated Gaussian-Gaussian noise
C £ to AE§.B, ARE#,A.

20 .05 3 .734 .767 .952 1.72
20 .20 3 -.196 .821 .960 3.10

5 .05 3 1.54 .957 .9?7 1.08
5 .20 3 .996 .957 .983 1.24

The results so far show that, in several analytical examples, it is possible to
achieve reasonably good performance from this simple approximation.
Simulation

To see how well this system might work in practice, some actual physical
noise was used to drive the system. The noise was collected underneath the Arc-
tic ice pack, and details may be found in [13]. The noise data is highly nonsta-
tionary; a background Gaussian noise is abruptly interrupted with segments of a
very heavy tailed noise generated by cracking of the Arctic ice pack. The kur-
tosis for each consecutive block of 1024 noise samples was calculated, and blocks
with a kurtosis exceeding 4 were selected. To get a more nearly stationary noise
for driving the system, the data in each block was normalized to unit variance,
randomly permuted, and the blocks were then concatenated, thus simulating the
output of a physical noise source. This noise was used as the input for the adap-
tive system. The exponent 6 was estimated from the running estimate of PT
which converges to the true tail probability as N-o.o. The scale parameter v can-
not be found via numerical methods, since in this case the simulated system has
no knowledge of the true density generating the noise observations. However,
the Kiefer-Wolfowitz stochastic approximation method can be used to find the
value of v* which maximizes G . The convergence rate towards v is fixed by the
particulars of the SA algorithm, and no formal attempts were made to optimize
its performance.

Figure 8 shows the running estimate of 6 and v as a function of sample
number. Figure 9 shows the estimated efficacy of 5 for each 1024 sample block,
and the cumulative estimate of efficacy starting from the first noise observation.
At the end of the simulation, it was assumed that the approximated ZNL was as
near optimal as possible. The final ZNL is shown in Figure 10. The efficacy of this
suboptimal detector was calculated using the empirical distribution of the entire
noise observation set, and it was found to be 1.39. The true distribution of the
noise is not known, and therefore it is not possible to calculate the efficacy of the
true LO nonlinearity. However, it is possible to conclude that the adaptive sys-
tem was able to use the noise observations and adapt the detector structure in a
constructive way. The ARE of the approximate ZNL relative to the linear detec-
tor is given simply by the efficacy in this case, and therefore the adaptive ZNL
shows an improved performance over the linear detector.

5. CONCLUI ON
The conclusion to be drawn from this study is that it is possible to imple-

ment an adaptive detector nonlinearity using fairly simple techniques. The esti-
mate of tal behavior is quite simple: merely a measurement of the relative
number of samples exceeding a specified threshold. This apparently gives
enough information about tail behavior of the true noise density, so that even a
crude approximation to the true ZNL in the tail regions results in fairly good per-
formance. A more sophisticated estimate of e might improve the performance
5. It would be interesting to discover how much additional complexity any
resulting performance gain could justify.~Il
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Some natural simplifications to this approximation method suggest them-
selves for investigation. One is to replace the central region polynomial in the
ZNL simply by a linear connection between the tail approximants at ±z 0. A
further simplification would be to replace the power-law tails with piecewise
linear approximations, possibly even a single straight line. Some work done by
others [7) in approximation of LO nonlinearities suggest that even very simple
approximants of the optimal nonlinearity have the potential to achieve perfor-
mance which is acceptably near the optimal.
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